The sum number and integral sum number of complete bipartite graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The integral sum number of complete bipartite graphs Kr, s

A graph G=(V; E) is said to be an integral sum graph (sum graph) if its vertices can be given a labeling with distinct integers (positive integers), so that uv ∈ E if and only if u+ v ∈ V . The integral sum number (sum number) of a given graph G, denoted by (G) ( (G)), was de:ned as the smallest number of isolated vertices which when added to G result in an integral sum graph (sum graph). In th...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

The unit sum number of discrete modules

In this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $Z_{2}$. We also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.

متن کامل

Sum Graphs of Small Sum Number

Given an integer r > 0, let G r = (V; E) denote a graph consisting of a simple nite undirected connected nontrivial graph G together with r isolated vertices K r. Let L : V ! Z + denote a labelling of the vertices of G r with distinct positive integers. Then G r is said to be a sum graph if there exists a labelling L such that for every distinct vertex pair u and v of V , (u; v) 2 E if and only...

متن کامل

The unit sum number of Baer rings

In this paper we prove that each element of any regular Baer ring is a sum of two units if no factor ring of R is isomorphic to Z_2 and we characterize regular Baer rings with unit sum numbers $omega$ and $infty$. Then as an application, we discuss the unit sum number of some classes of group rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2001

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(01)00195-9